CORE IPC API

Version 1.20

This document defines the communication interface for the Common Open
Research Emulator (CORE). CORE uses this API internally to communicate
between its components. Other systems may connect to CORE using this API to
control the emulated network topology. One example of such an external system
is a physical/link-layer simulator. The APl aims to operate on a higher level of
nodes and links, abstracting the lower-level details.

Table of Contents

I @Y= V1 P 2

2 MESSAQE FOIMAL......cieeiiiiiiiiii et e e e e e e e e e e e e e e e eennee 3

3 MESSAGE TYPES .ottt ee e e e e ettt e e ettt e et e e b r b e e areara 6
3.1 NOGE MESSAQE . .oiiei ettt e 6
3.2 LINK MESSAQE ..o eieeiiiii ettt 9
3.3 EXECULE MESSAQTE .. .ciiiiiiiiiiieiee ettt ettt e e e e e e ee e bbb s 12
3.4 REQISIEr MESSATE ...uuuuuuuununian s s smmmmsms s s s e sananasssne 15
3.5 CoNnfiguration MESSAQEuuuvururrrrrirrrtceereeeeerererrrereserenreerenrernrrerrnrneenanann 17
3.6 FIle MESSAQE ..o i i 20
3.7 INtErfaCe MESSAQEuuuuuuiuiiniiii i mremnen et e saarneae 22
3.8 EVENEMESSAQE. .. .ottt eeeeenm et e e 23
3.9 SESSION MESSAGE.....ciieeeieieeeeee e e e oot s ar e 25
3.10 EXCEPLON MESSAQE .. cieieeeeiieieee s ee e e mmmmmmm s s e a e a s e e e e e e e 26

4 Change LOg.....ccoooiiiiiieeee e 27

1 Overview

For information about CORE and for downloading the software, visit the CORE
project page: http://cs.itd.nrl.navy.mil/work/core/

For a quick reference to this APl and to view APl examples, refer to the CORE
wiki page: http://code.google.com/p/coreemu/wiki/API

The CORE daemon listens on a TCP socket for CORE API messages from other
local or remote systems. The CORE GUI connects locally to this daemon and
uses this API to instantiate topologies. CORE will also act as an “emulation
server” that listens for a TCP connection from another system. Upon connection
establishment, the other system transmits messages to the CORE daemon that
can control the live-running emulation. Port 4038 was chosen at random from the
IANA list of assigned port numbers (current status is unassigned).

The message types defined by this APl are summarized in Table 1-1.

Table 1-1 Overview of APl M essages

Type M essage Name Description

1 Node Adds and removes nodes from an emulation.

2 Link Links two nodes together.

3 Execute Run a command on a node.

4 Register Register an entity with another, foiifitattions or registering services.
5 Configuration Exchange configuration informatisith CORE.

6 File Transfer or copy short files (e.g. configioa files) to a node.
7 Interface Add and remove interfaces from nodes.

8 Event Signal an event between entities.

9 Session Manage emulation sessions.

10 Exception Signal errors, warnings, or other pkoa conditions.

CORE API Version 1.20 - Page 2

2 Message Format

One or more CORE API control messages may appear in a single TCP data
packet. The CORE API control messages use the following format:

0 1 2 3

01234567890123456789012345678901
B T T e e T i i e i s s ST I N S S i e S TR TR T e l i S S
| Source Port | Destination Port |
B T T e e T i i e i s s ST I N S S i e S TR TR T e l i S S
| Sequence Nunber |
B T i T T S o S e S S it s i ST S U S S S S S S
Acknow edgrment Nunber |
B o i s ST S i S S S i S I T e T s S S S
Data | | U Al PR S| F| |
Ofset| Reserved |RCS|S|lYI] W ndow |
I | & KIH TI N N| I
B T S R s T o T o s s a i o S S S I S S S
Checksum | Ur gent Poi nter |
B T i T T S S o s s S S S S iy S S S
Opti ons | Paddi ng |
i ol I T e ks ot R S e T ks i I S R S S &
Message Type | Fl ags | Message Length |
i s I T S e ks o R S e i ok i NI S R S S S
Message Data (variable |ength) |

I

T i S e i s e S e e T T S S S e S S T S
Message Type | Fl ags | Message Length |
B i S e e i i e e S e e i i it e TR S
Message Data (variable |ength) |

I

B T i o e ity S S S i sty S S S

+

+—-— +— +—— +— +— +— +———— " +

B i i i S S e e m T i R S S e S e e S
| Message Type | Fl ags | Message Length |
B i i i S S e e m T i R S S e S e e S
| Message Data (variable |ength) |
+-

I T S S S T S S S S i A S S e o

Figure 2-1 CORE M essage Format

The TCP header — everything (shown in gray) before “Message Type” —
represents the standard TCP header taken from the TCP specification in RFC
793. What follows is one or more CORE messages (shown in black). Each
Message starts with four bytes that indicate the Message Type, Flags, and
Message Length. A variable Message Data field follows, depending on the
Message Type. Numeric fields are unsigned values expressed in network byte
order where applicable.

CORE API Version 1.20 - Page 3

Table2-1 CORE Message Fields

Field

Length

Description

Message Type

8-bit value

Type of CORE message hndefines the contents of th
Message Data, required for parsing.

11%

Flags

8-bits

Message flags. Possible values:
00000001 = (0x01) Add flag
00000010 = (0x02) Delete flag
00000100 = (0x04) Critical flag
00001000 = (0x08) Local flag
00010000 = (0x10) Status response requested
00100000 = (0x20) Text output requested
01000000 = (0x40) TTY flag

Message Length

16-bit value

Length in bytes offesssage Data. Note that this is
represented in network byte order, and excludes the
Message Type, Flags, and Message Length fields.
The maximum Message Length is 65,535 bytes.

Message Data

variable length

Data specific to dessage Type, defined in the
sections below.

Each Message Type may implement one or more <Type, Length, Value> tuples,
or TLVs, for representing fields of data. This allows the flexibility of defining future
additional fields. The TCP packet can contain multiple messages, each which
may include several TLVs. This is depicted in Figure 2-2.

Each message type defines its own TLV types. The TLV Length indicates the
length in bytes of the TLV data, excluding the Type and Length fields. For clarity,
all of the TLV data fields shown in Figure 2-2 are 32 bits in length, but in reality
the TLV data can be any length specified by the TLV length field (up to 255).

0

1

2 3

01234567890123456789012345678901
BT el i i ik o T i e S S R T i ik Tk SETE RIS T SR S S
| Message Type | Fl ags
BT el i i ik o T i e S S R T i ik Tk SETE RIS T SR S S
| TLV Length | TLV data (vari abl e) |
BT el i i ik o T i e S S R T i ik Tk SETE RIS T SR S S
| TLV Length | TLV data (vari abl e) |

| TLV Type

TLV Type

|
+-
|
+-
|
+-
| TLV Type
+-

| Message Length |

I e i e i S S e S e S e e T e i el (I S S i o e e i Rl
TLV data (vari abl e,

I e i e i S S e S e S e e T e i el (I S S i o e e i Rl

Message Type | Fl ags

I e i e i S S e S e S e e T e i el (I S S i o e e i Rl

continued, example > 16 bhits) |

| Message Length |

| TLV Length | TLV data (vari abl e) |

i T s S ik T it S SR S S

Figure 2-2 Message sub-TLVs

The TLV data is padded to align to the 32-bit boundaries, and this padding length
is not included in the TLV length. For 32-bit and 64-bit values, pre-padding is
added (a series of zero bytes) so the actual value is aligned. Because the Type
and Length fields combined occupy 16 bits, there will be 16-bits of padding and

CORE API Version 1.20 - Page 4

then 32-bits of Value for 32-bit values. Strings are padded at the end to align with
the 32-bit boundary.

Although the TLV Length field is limited to 8 bits, imposing a maximum length of
255, special semantics exist for lengthier TLVs. Any TLV exceeding 255 bytes in
length will have a TLV Length field of zero, followed by a 16-bit value (in network
byte order) indicating the TLV length. The variable data field then follows this 16-
bit value. This increases the maximum TLV length to 65,536 bytes; however, the
maximum Message Length (for the overall message) is also limited to 65,536
bytes, so the actual available TLV length depends on the lengths of all of the
TLVs contained in the message.

CORE API Version 1.20 - Page 5

3 Message Types

3.1 Node Message

The Node Message is message type 1. The Node message may cause a variety
of actions to be performed, depending on the message flags:

No flag (00) — when neither the add or delete flags are set, this message
is assumed to modify an existing node or node state.

Add flag (01) — message is to create a node or create state for a node.

Delete flag (10) — message is to stop a node or delete state for a node.

Critical flag (100) — message should be processed, for example if the
node’s position is unchanged but a link calculation is requested.

Local flag (1000) — message is informational, for example to update a
display only.

Status request (10000) — a response message is requested containing the
status of this add/delete message.

(Text output (100000) — this flag is undefined for the Node Message.)

The TLVs for the Node Message are defined in Table 3-1 below.

The Node Type TLV determines what type of node will be created. These values
are defined in Table 3-2 below. The Model Type TLV further determines the
configuration of the node depending on the Node Type; values are defined in
Table 3-3 below. When the Model Type is not present, its value defaults to zero.

Table 3-1 Node M essage Fields

TLV type

TLV length

Name

Description

0x01

32-bit value

Node Number

Unique number usddentify a node.
Usually node numbering starts with zero and
increments.

0x02

32-bit value

Node Type

Indicates the typeadato be emulated. See
Table 3-2 for possible values.

n}

0x03

variable string

Node Name

Text name assignednode. The string doe
not need to be NULL terminated as the exag
length is specified in the TLV length. Note th
the node number identifies a node, not its
name.

—

0x04

32-bit value

IP Address

Optional: IP Addressigned to a node.
Value to be in network byte order.

0x05

64-bit value

MAC Address

Optional: MAC Addresssigned to a node.
Usually only 48-bits of the 64-bits value are
used, but 64-bits helps with network byte
ordering.

0x06

128-bit value

IPv6 Address

Optional: IPv6 Aekl assigned to a node.

0x07

Variable string

Model Type

Optional: indicathe model used for this
node type. Assumed to be “router” if the TLV
is omitted. Used for associating services wit
node. This field is like a node sub-type that

na

allows for user-defined types.

CORE API Version 1.20 - Page 6

0x08 variable string Emulation Server Optional semvame on which this node
should be instantiated.
Ox0A variable string Session Optional numeric identifier(s) indicating the
Number(s) Session(s) this message is intended for. A lis
of Session numbers may be used, separated by
a pipe “|” symbol.
0x20 16-bit value X position Optional: horizontalgition where the node
should be drawn on the logical network map| If
no position is given, CORE selects the nodefs
position. The typical width of the CORE
screen is 1024,
0x21 16-bit value Y-position Optional: vertical jta=n where the node
should be drawn on the logical network map, If
no position is given, CORE selects the nodefs
position. The typical height of the CORE
screen is 768.
0x22 16-bit value Canvas Optional: canvas number (tigher) on
which node should be drawn with X, Y
coordinates. If omitted, default value is 0.
0x23 32-bit value Emulation ID The ID of the emeldtnhode. This implies that
the emulated node has been instantiated. For
FreeBSD this is the Netgraph ID of the
wireless interface of the node.
0x24 32-bit value Network ID Number identifying thetwork this node
belongs to. For example, the node number of
the attached WLAN node.
0x25 variable string Services List of startup sessgi configured for this
node, string names separated by ‘|' character
0x30 variable string Latitude Optional latitude dtion.
0x31 variable string Longitude Optional longitudedtion.
0x32 variable string Altitude Optional altitude &ion.
0x42 variable string Icon Optional: path of icole fior display
0x50 variable string Opaque data User-defined ftatpassing any type of
information.
Table3-2 Node Type TLV Values
Node Type Value Name Description
0x0 Default Network Namespace (Linux) or jail (EBSD) based
emulated node.
0x1 Physical A physical testbed machine that cavaslable to be linked
in to the emulation and controlled by CORE.
0x2 Xen A Xen based domU node.
0x3 Undefined
0x4 Switch Layer 2 Ethernet bridge, learns conrebtests and unicasts
to appropriate link only.
0x5 Hub Layer 2 Ethernet hub, forwards data te@finected links.
0x6 WLAN Wireless LAN object forwards data intekigtly between
connected node pairs based on rules.
0x7 RJ45 Connects physical Ethernet device to the emulation.
0x8 Tunnel Uses Span tool to build tunnels to o#reulations or
systems.

CORE API Version 1.20 - Page 7

0x9 Ktunnel Uses ng_ksocket to build tunnels frame &ernel to another.
OxA EMANE EMANE network uses pluggable MAC/PHY mdsle
Table 3-3 Deprecated Modd Type TLV Values
Note: the Model Type was changed to a string and these values are no longer used
Node Type Moaodel Type Description
0x0 0x0 (default) Wireless Quagga router configurechvdtSPF-MANET
Router/Quagga | Ox1 Wired Quagga router configured with OSPF

0x2 Static router configured with static routestmnected
0x3 Dummy router drawn on screen but not emulated
0x4 Remote router represents remote-controlled mach

0x1 Router/XORP

0x0 (default)

Wired XORP router

0x6 WLAN 0x0 (default) Default WLAN with built-inange model
0x1 WLAN uses plug-in models.
0x7 RJ45 0x0 (default) RJ45 node is wired to armatioele. Interface given by node

name.

0x1 RJ45 node is linked to the wireless networterface given
by node name.
0z2 Interface is installed to a particular noden@simage -i).

Node is given by node number, interface given bgenoame,
and flags must be set to modify or delete only.

CORE API Version 1.20 - Page 8

3.2 Link Message

The Link Message is message type 2. A Link specifies a connection between two
nodes, specified by their node numbers. The Link message may cause a variety
of actions to be performed, depending on the message flags:

No flag (00) — when neither the add or delete flags are set, this message
is assumed to modify an existing link or link state.

Add flag (01) — message is to create a link or create state for a link.

Delete flag (10) — message is to remove a link or delete state for a link.

Critical flag (100) — message should not be ignored, for example due to
rate limiting.

Local flag (1000) — message is informational, for example to update a
display only.

Status request (10000) — a response message is requested containing the
status of this add/delete Link Message.

(Text output (100000) — this flag is undefined for the Link Message.)

The TLVs for the Link Message are defined in Table 3-4 below.

CORE API Version 1.20 - Page 9

Table 3-4 Link M essage Fields

TLV Type

TLV Length

Field

Description

0x01

32-bit value

Node 1 Number|

The number of tte hode that the link
connects.

0x02

32-bit value

Node 2 Number

The number of #mad node that the lin
connects.

0x03

64-bit value

Link Delay

The value of the detdythe link in
microseconds (Us), in network byte order
The value may be zero (no delay). The
maximum value is 2000000 ps (2 s).

0x04

64-bit value

Link Bandwidth

The value of thenblwidth of the link in
bits per second (bps), in network byte order.
Sample values are:

100000000 = 100M

10000000 = 10M

512000 =512 kbps

0 = Unrestricted bandwidth.

Up to gigabit speeds are supported.

0x05

64-bit value

PER

The Packet Error Rate, sjgecih percent
(%), or Bit Error Rate (FreeBSD). The
value should be between 0-100% inclusive
for PER.

0x06

16-bit value

Duplicates

The duplicate paclatent (%), where the
specified percentage of packets will be
randomly duplicated on this link.

The value may be zero (no duplicates).
Maximum value is 50%.

0x07

16-bit value

Link Jitter

The value of the randdelay applied to
the link in microseconds (us), in network
byte order. The value may be zero (no
jitter). The maximum value is 2000000 ug
(2 s).

0x8

16-bit value

MER

The Multicast Error Rate, dfied in
percent (%).

0x9

16-bit value

Burst

The Burst rate, specifiegp@ncent (%),
which is the conditional probability that th
next packet will be dropped given the last
packet was dropped.

1%

OxA

variable string

Session
Number(s)

Optional numeric identifier(s) indicating
the Session(s) this message is intended for.
A list of Session numbers may be used,
separated by a pipe “|” symbol.

0x10

16-bit value

Multicast Burst

The Burst rate faulticast packets (%)

0x20

32-bit value

Link Message
Type

Indicates whether this message is
creating/deleting a link (type=1) or
signaling a wireless link event (type=0).

0x23

32-bit value

Emulation ID

The ID of the emeldthode. For FreeBSD
this is the Netgraph ID of the wireless
interface of the node. This TLV can appea
multiple times, first for node 1, then for
node 2.

=

0x24

32-bit value

Network ID

The number of the netivto which this
link belongs. This allows the same node
pairs to be joined to two networks.

CORE API Version 1.20 - Page 10

=

0x25 32-bit value Key Value used with Tunnel Node the GRE
key.
0x30 16-bit value Interface 1 The number of the interface on Node 1, fa
Number example 0 would cause an interface “eth(’
to be created, 1 would create “ethl”, etc.
0x31 32-bit value Node 1 IPv4 The IPv4 address assigned to the interfage
Address on Node 1; auto-assigned if not specified
0x32 16-bit value Node 1 IPv4 The number of bits forming the network
Netmask Bits mask for the IPv4 address on Node 1, fo
example 24 for a /24 address
0x33 64-bit value Node 1 MAC The MAC address assigned to the interface
Address on Node 1
0x34 128-bit value Node 1 IPv6 The IPv6 address assigned to the interfage
Address on Node 1
0x35 16-bit value Node 1 IPv6 The number of bits forming the network
Netmask Bits mask for the IPv6 address on Node 1
0x36 16-bit value Interface 2 The number of the interface on Node 2
Number
0x37 32-bit value Node 2 IPv4 The IPv4 address assigned to the interfage
Address on Node 2; auto-assigned if not specified
0x38 16-bit value Node 2 IPv4 The number of bits forming the network
Netmask Bits mask for the IPv4 address on Node 2
0x39 64-bit value Node 2 MAC The MAC address assigned to the interface
Address on Node 2
0x40 128-bit value Node 2 IPv6 The IPv6 address assigned to the interfage
Address on Node 2
0x41 16-bit value Node 2 IPv6 The number of bits forming the network
Netmask Bits mask for the IPv6 address on Node 2
0x50 variable string Opaque data User-defined fdatpassing any type of

information.

CORE API Version 1.20 - Page 11

3.3 Execute message

The Execute Message is message type 3. This message is used to execute the
specified command on the specified node, and respond with the command output
after the command has completed if requested to do so by the message flags.
Because commands will take an unknown amount of time to execute, the
resulting response may take some time to generate, during which time other API
messages may be sent and received. The message features a 32-bit identifier for
matching the original request with the response. No flags are defined. Either the
Command String or Result String TLV may appear in an Execute Message, but
not both.

The following flags are used with the Execute Message:

(Add flag (01) — this flag is undefined for the Execute Message.)

Delete flag (10) — cancel a pending Execute Request Message having the
given Execution Number.

Critical flag (100) — this Execute Request should be immediately executed,
regardless of any existing, pending requests for this node.

Local flag (1000) — this Execute Request should be executed on the host
machine, not from within the specified Node; the command being
executed affects the specified Node and should be run in the order it
was received with other local Execute Requests regarding this Node.

Status request (10000) — an Execute Response message is requested
containing the numeric exit status of the executed process.

Text output (100000) — an Execute Response message is requested
containing the complete output text of the executed command.

Interactive terminal (TTY) flag (1000000) — this message requests the
command to be executed in order to spawn an interactive user shell on
the specified node.

The TLVs for the Execute Message are defined in Table 3-5 below.
Note that the Result String will likely exceed the TLV length of 255, depending on
the output of the specified command. In that case, the TLV Length field is set to

zero, followed by a 16-bit value specifying the TLV length. The maximum result
length is therefore 65,536 bytes minus the length of the other TLVs.

CORE API Version 1.20 - Page 12

Table 3-5 Execute M essage Fields

TLV Type

TLV Length

Field

Description

0x01

32-bit value

Node Number

The number of theenmd which the
command will be executed or was execut
or the number of the node that this
command is concerned with.

0x02

32-bit value

Execution
Number

An identifier generated by the caller for
matching an asynchronous response.

0x03

32-bit value

Execution Time

(Optional TLV) Hexecute Requests,
indicates a desired time for starting
command execution. For Execute
Responses, indicates the time at which
command execution has completed. The
time value represents the number of seco
since the Epoch of 00:00:00 UTC Januar
1, 1970, as the Unix time(2) and
gettimeofday(2) system calls. A zero valu
indicates that the command should execu
immediately. Absence of this optional TL
implies a zero value.

nds

1%}

te

0x04

variable string

Command Strin

g The presenchisffield indicates an
Execute Request Message. String

The string does not need to be NULL
terminated as the exact length is specifieg
the TLV length.

containing the exact command to execute.

1in

0x05

variable string

Result String

The presendhisffield indicates an
Execute Response Message. String
containing the output of the command tha
was run. Note that the string does not nee
to be NULL terminated as the exact lengt
is specified in the TLV length.

2d

0x06

32-bit value

Result Status

This field maymeluded in the Execute
Response Message and contains the
numeric exit status of the executed proce

Ox0A

variable string

Session
Number(s)

Optional numeric identifier(s) indicating
the Session(s) this message is intended f
A list of Session nhumbers may be used,

separated by a pipe “|” symbol.

CORE API Version 1.20 - Page 13

o

1 2 3
01234567890123456789012345678901
B i i i o o i i R R e t i i s o i S S
Msg Type=3 |]OO0OO0OO0O0OO0O0Q Message Length |
B i i i o o i i R R e t i i s o i S S
TLV-type=0x01 | TLV-len=4 | Pad (zero) |
i I e s i o ok SR I R S R S e T i e S i ot e R R S

Node Nunber |

i I e s i o ok SR I R S R S e T i e S i ot e R R S
TLV-type=0x02 | TLV-len=4 | Pad (zero) |
B i S e s T e S e S e sk ik T S i TR S
Executi on Number |

i e T T e i I Lo i i ks ol SR S R S i S O i ks it SN &
TLV-type=0x03 | TLV-len=4 | Pad (zero) |
i e T T e i I Lo i i ks ol SR S R S i S O i ks it SN &
Execution Time |

B i i i o o i I R S e s o S e S S
TLV-type=0x04 | TLV-1en=10 | Conmand Stri ng |
B i i i o o i I R S e s o S e S S
(... Comuand String cont.) |

B i i i o o i I R S e s o S e S S
(... Conmmand Strina cont.) I

+

+

-+ +—"+——+—"+—+— +— +— +— +

Figure 3-1 Execute M essage For mat

CORE API Version 1.20 - Page 14

3.4 Register message

The Register Message is message type 4. This message is used by entities to
register to receive certain notifications from CORE or to register services.

The following flags are used with the Register message:
Add flag (01) - add a registration (same as no flags)
Delete flag (10) - remove a registration, i.e. unregister
Critical flag (100) - undefined
Local flag (1000) - undefined
Status request (10000) - request a list of child registrations
Text output (100000) - response of child registrations

Child registrations are defined as follows: if entity 1 registers with entity 2 and
requests a list of child registrations, entity 2 will respond with a list of entities that
it currently has registered with itself.

Register TLVs may occur multiple times within a Register message, for example
if there are several Wireless Modules.

The TLVs for the Register Message are defined in Table 3-6 below.

CORE API Version 1.20 - Page 15

Table 3-6 Register Message Fields

TLV Type

TLV Length

Field

Description

0x01

variable string

Wireless Modul

D

Registers eeless module for use with
CORE. The string contains a single model
name. For example, the string “simple” for
the simple module.

0x02

variable string

Mobility Module

Registers alilidy module for use with
CORE. The string contains a single model
name. For example, the string “random
waypoint” for the random waypoint
module.

0x03

variable string

Utility Module

Registers alityimodule for use with
CORE. The string contains a single model
name. For example, the string “GPS” for the
GPS module.

0x04

variable string

Execution Serve

2r Registeraenbn that will handle

Execution Messages.

0x05

variable string

GUI

Registers a GUI that wilplay nodes and
links. May trigger a Register Message
response back to the GUI with daemon
capabilities.

0x06

variable string

Emulation Servg

2r Registersendon that will handle

emulation of Nodes and Links.

0x07

variable string

Relay

Registers a daemonrtiays CORE
messages.

Ox0A

variable string

Session
Number(s)

Optional numeric identifier(s) indicating
the Session(s) this message is intended for.
A list of Session numbers may be used,
separated by a pipe “|” symbol.

CORE API Version 1.20 - Page 16

3.5 Configuration message

The Configuration Message is message type 5. This message is used by an
external entity to exchange configuration information with CORE.

Configuration
Request (request)

Configuration response
CORE (types, values, captions) external

4 o
Configuration data entlty
(types, values)

>

Figure 3-2 Configuration Messaging

Using this Configuration Message, CORE can cause the external entity to
provide configuration defaults and captions for use in a GUI dialog box (for
example when a user clicks configure), and after the dialog box has been filled
in, CORE sends the entered data back to the entity. See Figure 3-2.

The Configuration Message must contain the Configuration Object TLV. This
identifies the object being configured. For example, this string might be one of
the WLAN models listed in a previous Register Message.

The Configuration Message must contain the Configuration Type Flags TLV. This
TLV contains one or more flags indicating the content of the message. The valid
flags are:
0001 = Ox1 = Request - a response to this message is requested
0010 = 0x2 = Update - update the configuration for this node

(this may be used to communicate a Netgraph ID)
0100 = 0x3 = Reset - reset the configuration to its default values

The Data Types TLV includes one or more 16-bit values that indicate the data
type for each configuration value. The possible data types are described in Table
3-7.

Table3-7 Data Types TLV Values

Type Size
number Description | (bytes)
1 8-bit unsigned value 1

2 16-bit unsigned value 2

3 32-bit unsigned value 4

4 64-bit unsigned value 8

5 8-bit signed value 1

6 16-bit signed value 2

CORE API Version 1.20 - Page 17

7 32-bit signed value 4
8 64-bit signed value 8
9 32-bit floating point value 4
0
1

NULL-terminated string variable
boolean value L

1
1

The Values TLV contains one or more strings, each representing a value. The
strings are separated by a pipe “|” symbol. These values may be default values
or data supplied by the user.

The Captions TLV contains one or more strings, which may be displayed as
captions in a configuration dialog box. The strings are separated by a pipe *“|”
symbol.

Generally, the Data Types, Values, and Captions TLVs will refer to the same
number of configuration items. This number may vary depending on the object
being configured. One additional caption may be specified in the Captions TLV
for display at the bottom of a dialog box.

CORE API Version 1.20 - Page 18

Table 3-8 Configuration M essage Fields

TLV Type TLV Length Field Description
0x01 32-bit value Node Number Node number beindigared. This could
be the WLAN node number, for example.
0x02 variable string Configuration | Names the object being configured. This
Object could be the name of the wireless model, [for
example.
0x03 16-bit value Configuration | Bit flags indicating the type of
Type Flags configuration message. Possible values are:
0001 =1 = Request
0010 = 2 = Update
0100 = 3 = Reset
0x04 variable Data types List of data types forahsociated Values
each type is a 16-bit value.
0x05 variable string Values Text list of configuoat values, separated
by a pipe “|” symbol.
0x06 variable string Captions List of captions dicalog box display,
separated by a pipe “|” symbol.
0x07 variable Bitmap Pathname of a bitmap for djdlox
display.
0x08 variable string Possible Valueg Optional tsttof possible configuration
values, separated by a pipe “|” symbol.
Numeric value ranges may be specified
with a dash, e.g. “30-70”; individual options
may be specified with a comma, e.g.
“1,2,5.5,11" text labels for boolean values,
e.g. “on,off”
0x09 variable string Value Groups Optional text éifvalue groupings, in the
format “title1:1-5[title2:6-9]|10-12", where
title is an optional group title and i-j is a
numeric range of value indices; groups are
separated by commas
Ox0A variable string Session Optionally indicate session number(s) for
Number(s) this configure message, possibly overriding
the node number. A list of Session numbers
may be used, separated by a pipe “|’
symbol.
0x21 variable string GUI Attributes Optional stridgscribing link color, width,
dashed style, etc.
0x23 32-bit value Emulation ID
0x24 32-bit value Network ID
0x25 32-bit value Key Key used for GRE tunnels.
0x50 variable string Opaque data User-defined fdatpassing any type of

information.

CORE API Version 1.20 - Page 19

3.6 File Message

The File Message is message type 6. This message is used to transfer a file or a
file location. Because files may be large, compression may be used or, if the two
entities have access to the same file system, this message can provide the path

name to a file.

If the Add flag is specified, any existing file will be truncated. If the Delete flag is
specified, the specified file will be deleted and the file data ignored. If neither the
Add nor Delete flags are used, file data may be appended to the end of a file if it
exists.

If the Node Number TLV is present, the File Name TLV indicates the full path and
name of the file to write on the specified node’s filesystem (where applicable). If
the Node Number TLV is absent, then the File Name TLV indicates the
destination file name on the host’s local filesystem, not the (virtual) filesystem of
one of the nodes.

The Source File Name TLV may optionally be used to specify a path accessible
by the receiving entity. In this case, any file data is ignored, and data is copied
from the source file to the destination file name.

Note that the file data will likely exceed the TLV length of 255, in which case, the
TLV Length field is set to zero, followed by a 16-bit value specifying the TLV
length. The maximum file data length is therefore 65,536 bytes minus the length
of the other TLVs. If the file exceeds 65,536 bytes in length, it should be
transferred in chunks using the File Sequence Number TLV.

The TLVs for the File Message are defined in Table 3-9.

CORE API Version 1.20 - Page 20

Table 3-9 File M essage Fields

TLV Type TLV Length Field Description

0x01 32-bit value Node number Indicates the noderethe file should be
written. If this TLV is absent, the file will
be written on the host machine.

0x02 variable string File name The full path ancheaof the file to be
written.

0x03 variable string File mode Optionally specifibe file mode bits as
used by the chmod(2) system call.

0x04 16-bit value File number Optional file numbdiay be a sequence
number used to specify chunks of a file that
should be reassembled, or other semantics
defined by an entity.

0x05 variable string File type Optional file typepided so the receiving
entity knows what to do with the file (e.qg.
service name, session hook.)

0x06 variable string Source file nam Specifieath mame of a source file on the
filesystem, so the file data TLV is not
needed.

O0x0A variable string Session Optional numeric identifier(s) indicating

Number(s) the Session(s) this message is intended for.

A list of Session numbers may be used,
separated by a pipe “|” symbol.

0x10 variable binary | Uncompressed | The binary uncompressed file data.

data file data
0x11 variable binary | Compressed file | The binary file data that has been

data

data

compressed with gzip compression.

CORE API Version 1.20 - Page 21

3.7 Interface Message

The Interface Message is message type 7. This message will add and remove
interfaces from a node. While interface information may be contained in the Link
messages, this separate message was defined for clarity. Virtual interfaces
typically may be created and destroyed, while physical interfaces are generally
either marked up or down.

If the Add flag is specified, an interface is created. If the Delete flag is specified,
the specified interface will be deleted. If neither the Add nor Delete flags are
used, the interface will be modified according to the given parameters.

Table 3-10 I nterface M essage Fields

ge.

l

t

TLV Type TLV Length Field Description

0x01 32-bit value Node number Indicates the node@ated with the
interface.

0x02 16-bit value Interface Number Interface numbarassociating with the
interface numbers used in the Link messg

0x03 variable string Interface Name The name ofnterface, for example
“eth3”. If this name is not specified, the
name may be derived from the interface
number.

0x04 32-bit value IPv4 Address Optional IPv4 addrassigned to this
interface. Value in network byte order.

0x05 16-bit value IPv4 Mask Optional IPv4 networksk. Requires 1Pv4
address.

0x06 64-bit value MAC Address Optional MAC addrassigned to the
interface. Usually only 48-bits of the 64-bi
value are used.

0x07 128-bit value IPv6 Address Optional IPv6 addrassigned to the
interface.

0x08 16-bit value IPv6 Mask Optional IPv6 networksk. Requires IPv§
address.

0x09 16-bit value Interface type Interface typecsfer: 0 = Wired Ethernet
interface, 1 = Wireless interface, other
values TBD.

O0x0A variable string Session Optional numeric identifier(s) indicating

Number(s) the Session(s) this message is intended f

A list of Session numbers may be used,
separated by a pipe “|” symbol.

0x0B 16-bit value Interface state 0 = Interfacaps 1 = Interface is down,
other values TBD.

0x23 32-bit value Emulation 1D The ID of the emeldtinterface. On
FreeBSD for example this may be the
Netgraph ID.

0x24 32-bit value Network ID Number identifying thetwork this

interface belongs to, for associating with

Link Messages for example.

CORE API Version 1.20 - Page 22

3.8 Event Message

The Event Message is message type 8. This message signals an event between
entities or schedules events in a session event queue. For example, here is an
exchange of Event messages when the user presses the “Start” button from the

CORE GUI:

GUI Event(type="configuration state’) > CORE Services
GUI Node(...) = Link(...) 2

CORE Services

“I am sending you node/link configurations.”

GUI Event(type="instantiation state’) > CORE Services

GUI

“I am done sending node/link configurations. Go ahead with
instantiating the emulation.”

< Event(type="runtime state’)
“The emulation has been started, and entered the runtime state.”

CORE Services

Message Flags are currently used only to add and remove scheduled events.
Event Message TLVs are shown in Table 3-11 below. Possible values for the
Event Type TLV are listed in Table 3-12 below.

Table 3-11 I nterface M essage Fields

TLV Type TLV Length Field Description

0x01 32-bit value Node number Optional. Indicatessriode associated wit
the Event. When not specified, the Event
may pertain to all nodes.

0x02 32-bit value Event Type Indicates the typew#nt this message
describes.

0x03 variable string Event Name Optional name aaged with the Event.

0x04 variable string Event Data Optional data assed with the Event.

0x05 variable string Event Time Event start timed@tonds, a float value in
string format.

0x06 64-bit value Event Number Optional Event numbe

Ox0A variable string Session Optional numeric identifier(s) indicating

Number(s) the Session(s) this message is intended f

A list of Session numbers may be used,

separated by a pipe “|” symbol.

Table 3-12 Event Type TLV Values

Type

number Description
1 Definition state
2 Configuration state
3 Instantiation state
4 Runtime state
5 Data collection state
6 Shutdown state
7 Start
8 Stop

CORE API Version 1.20 - Page 23

9 Pause
10 Restart
11 File Open
12 File Save
13 Scheduled

CORE API Version 1.20 - Page 24

3.9 Session Message

The Session Message is message type 9. This message is used to exchange
session information between entities.

The following flags are used with the Session message:
Add flag (01) - add new session or connect to existing session if it exists
Delete flag (10) - remove a session and shut it down
Status Response Flag (10000) — request a list of sessions; if used in

conjunction with the Add flag, request a list of session objects upon
connecting

Session Message TLVs are shown in Table 3-13 below. The Session number is
required. However, the current session number may be unknown, and a value of
zero can be used to indicate the current session.

Table 3-13 Session M essage Fields

TLV Type TLV Length Field Description
0x01 variable string Session Unigue numeric identifier(s) for a Session,
number(s) A list of Session numbers may be used,

separated by a pipe “|” symbol.

0x02 variable string Session name(s) Optional najressociated with this
Session. A list of Session names may be
used, separated by a pipe “|” symbol.

0x03 variable string Session file(s) Optional faeme(s) associated with this
Session. A list of Session filenames may
used, separated by a pipe “|” symbol.

0x04 variable string Node count Optional numbenades in this session. 4
list of number of nodes may be used,
separated by a pipe “|” symbol.

0x05 variable string Date Date and time the sessasstarted.

0x06 variable string Thumbnail File Optional thurabrilename for displaying
a preview image of this session.

0x07 variable string Username Option username. ltsedorm which
user is connecting to a session, for helpin
with e.g. file permissions.

0x0A variable string Session opaque Opaque datziased with this Session.

CORE API Version 1.20 - Page 25

3.10 Exception Message

The Exception Message is message type 10 (Ox0A). This message is used to
notify components of warnings, errors, or other exceptions.

No flags are defined for the Exception Message.

Exception Message TLVs are shown in Table 3-14 below. The Exception Level is

required.
Table 3-14 Exception M essage Fields
TLV Type TLV Length Field Description
0x01 32-bit value Exception Node| Optional node number indicating the
number exception is associated with a node.
0x02 variable string Exception Optional numeric identifier(s) associating
Session the exception with one or more Sessions.|A
number(s) list of Session numbers may be used,
separated by a pipe “|” symbol.
0x03 16-bit value Level Required numeric value usehdicate
level of severity for this exception.
0x04 variable string Source Optional text indicgtthe name of the
component the generated the exception.
0x05 variable string Date Date and time string bEwthe exception
was thrown.
0x06 variable string Exception Text Required teasatibing the exception.
Ox0A variable string Exception Opaque data associated with this Exceptipn.
opaque

Exception Levels, used to indicate the severity of the exception, are defined in
Table 3-15 below.

Table 3-15 Exception Levels

Exception Level | Description
1 Fatal Error
2 Error

3 Warning

4 Notice

CORE API Version 1.20 - Page 26

4 Change Log

0]

Version Date Description
1.0 2/6/06 initial revision
1.1 2/15/06 | added the TLV format to allow flexibjlin defining various fields that are
suggested by Dan Mackley
1.2 2/16/06 | allow multiple nodes per packet as satggl by DM
1.3 4/4/06 update fields to 32-bits, add paddingtbit boundary; total length
changed to sequence number
1.4 7/20/06 | add IP, IPv6, and MAC address fieldddde Message
15 9/1/06 correction of type/length field to 8shiih all sections
1.6 9/20/06 | addition of “Canvas” selection for nddeation specification
1.7 2/14/07 renamed to CORE API, removed messaagehe
1.8 8/1/07 added Execute Message; fix Link Messkggram; other minor fixes
1.9 12/3/07 | added Register Message; increase Thgthe for link parameters, added
some new TLVs, allow TLV length of 65,536, remower® figures
1.10 12/18/07 | changed order of link effect TLVs;BBecomes PER
1.10 1/3/08 updated formatting
1.11 1/9/08 added Configuration Message
1.12 4/15/08 | enhanced Register Message with additimodule types; added types to
Data Types TLV; Data Values TLV into string; digiiish between
Emulation ID and Network ID, no longer overloadiNgde Number with
Netgraph IDs; list maximum values and fix packeberate to %
1.13 5/15/08 | Added separate Node Type table andvhedel Type TLV for the Node
Message; added critical flag
1.14 11/12/08 | Added Exec Server TLV to Register $4gg; added link type, interface
numbers, and addressing TLVs to Link message;chlitieR, burst and
multicast burst effects to Link message; use 64unihber for MAC
addresses instead of 48-bit; added local, stahastext flags; added Exec
Status TLV
1.15 6/19/09 | Added File Message, GUI and serverdfor Register; updated overview|
text
1.16 8/6/10 Added Interface, Event, and Session Messaiptated the overview
(CORE 4.0) section. Added Relay type to Register message. d\dumlel type for
WLAN nodes. Added EMANE node type and Opaque nddé. Thanged
lat/long/alt Node TLVs to strings. Added Possiblalies and Groups TLVS
to Configuration message along with boolean dagia.tpidded Emulation
Server TLV to Node Message.
1.17 12/23/10 | Added services TLV to Node Message, Sedsionber and Opaque Data
(CORE 4.1) Configuration and Link Messages. Added Key TL\Liok Message. Node
Model TLV changed from 32-bit to string. PER chathge 64-bit value.
1.18 8/18/11 | Changed node types to accommodate diffenachine types, removing
(CORE 4.2) XORP, PC, Host types, which are now representetblolg services.
Changed link type TLV to separate wireless linkitnkilevents. Removed
heading, platform type, platform ID TLVs from nonessage. Added flags|
and user TLV to Session Message.
1.19 2/10/12 | Added Exception Message. Changed File Typéto string in File
(CORE 4.3) Message. Added File Open and File Save event types.
1.20 7/30/12 | Added Session TLV to all messages (excepsiSn, Exception) for
(CORE 4.4) connectionless messages, and changed Configui#eesage Session TLV

to a string. Added link TLVs for color and widthdded support for

scheduled events, event time, and event numbbeetBvent Message.

CORE API Version 1.20 - Page 27

